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Abstract 1. Introduction

Lattice Boltzmann algorihms are a mesoscopic There is much interest in the defense community to
representation of nonlinear continuum physics (like accurately determine turbulent flows over non-trivial
Navier-Stokes, magnetohydrodynamics (MHD), Gross- boundaries (e.g., instabilities and wakes from naval ships
Pitaevskii equations) which are ideal for parallel and aircraft) as well as intermittent turbulence induced in
supercomputers because they transform the difficult the upper atmosphere under the jet stream to optimize
nonlinear convective macroscopic derivatives into purely laser propagation from airborne platforms. However, for
local moments of distribution functions. The macroscopic many of these turbulent flows, standard computational
nonlinearities are recovered by relaxation distribution fluid dynamics (CFD) codes (now necessarily non-pseudo
functions in the collision operator whose dependence on spectral) quickly saturate with the number of processing
the macroscopic velocity is algebraically nonlinear and elements (PEs) due to the nonlocal nonlinear convective
thus purely local. Unlike standard computational fluid derivatives in the Navier-Stokes equations. However, by
dynamics codes, there is no loss in parallelization in projecting into a lattice kinetic phase space, the turbulent
handling arbitrary geometric boundaries, e.g., using dynamics in this mesoscopic description are simpler and
bounce-back rules from kinetic theory. By encoding much easier to solve with algorithms that are ideally
detailed balance into the collision operator through the parallelized. The lattice kinetic solution is then projected
introduction of discrete H-function, the lattice Boltzmann back into the macroscopic space by Chapman-Enksog
algorithm can be made unconditionally stable for expansions to recover the fluid turbulence solution.
arbitrary high Reynolds numbers. It is shown that this The standard lattice Boltzmann (LB) scheme
approach is a special case of a quantum lattice employs a simple Bhatnagar-Gross-Krook (BGK)
Boltzmann algorithm that entangles local qubits through collision operator, with fixed relaxation rate. This leads
unitary collision operators and which is ideally to strong numerical instabilities for high Reynolds
parallelized on quantum computer architectures. Here number flows. However, by enforcing detailed
we consider turbulence simulations using 2,048 PEs on a balance [1

,
21 into the collision operator, a generalized

1,6003-spatial grid. A connection is found between the (entropic) BGK operator is found that will lead to .
rate of change of enstrophy and the onset of laminar-to- unconditionally stable numerical algorithm for arbitrary
turbulent flows. high Reynolds numbers. Here, we test this entropic

lattice scheme (which in some sense can be viewed as a
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large eddy simulation) on extremely large grids and In the Q-dimensional velocity space, the relaxation
determine some of the turbulence statistics. In Section 2, distribution function fq is determined analytically by
we give a brief overview of the entropic lattice Boltzmann
scheme and show its connection to quantum lattice extremizing the H-function subject to the local collisional
algorithms 31. In Section 3 we present some of our free constraints of conservation of probability and probability

shear turbulence simulation results from the Capability flux. fq, considered as a vector, is the bisector of the
Applications Project (CAP) runs using 2,048 PEs on difference between the incoming and outgoing kinetic
1,6003-spatial grids. In Section 4 we discuss a new vectors in the inviscid limit lim, 0 a12 r = 2:
turbulence morphology gleaned from detailed analysis of I
simulations on 512 3-grids and present some concluding fq = f Zqq_2rf, fq = 

q 
q+ 1- Qq (4)

remarks in Section 5. a

Eliminating fQq and fq' from Eqs. (4) and (1) one obtains
2. Lattice Boltzmann Algorithms the LB equation

At each space-time grid point (x,t) in lattice f,(x+Ax +A)=f,(x,)+- a[f, (x,t)]-f(x,t), q=...Q (5)
algorithms, the excited state of a qubit I q) encodes the This is basically the entropic LB 1'21 with the BGK
probability fq of the existence of a mesoparticle moving cisial tio etrs ith t ad e

with discrete lattice velocity cq = Axq / At . Axq are the collisional relaxation parameters a(x,t)/2r and fqq

lattice vector links, with q = 1,2 .... Q, where Q is the determined from Eqs. (2) and (3). In the Chapman-
number of qubits at each spatial node. The particle Enksog limit, (Ax -> 0, At --* 0)-and identifying the
momentum is determined from a suitably chosen qubit- density and momentum moments
qubit interaction Hamiltonian H'while the spatial location Ifq = p, ZCqfq = p u -one recovers the quasi-
arises from the free-streaming Hamiltonian -ihZ Cq" V. q q

q incompressible Navier-Stokes equation with
All the particle-particle interactions generated by H'(from I ( 4*
2-body up to Q-body interactions) can be mapped onto a effective viscosity: p(x,t) 61
local collision operator £ q (f].... fQ) at x. In particular, for (6)
type-I quantum algorithms, the quantum entanglement is 1__(
localized to those Q-qubits at (x,t) and then this molecular viscosity: = 2r-1), r>0.5
entanglement is spread throughout the lattice by unitary
streaming[3,4]: To avoid discrete lattice geometry effects polluting the

turbulence simulations, one is restricted to certain Q's on
f'(x,t) = f (x, t)+ Q, (f ... f)' f, (x+ Ax,t At) = f'(x, t). (1) a cubic lattice. In particular it can be shown that on a unit

Here fq is the incoming probability and fq the outgoing cubic lattice, the lowest order kinetic velocity models are

probability. In the classical limit, there exists a Q15: rest velocity, speed 1 (6 velocities), speed 43 (8
fundamental discrete entropy function [ 1' 2'51  velocities) - i.e., Q = 15

Q Q19: rest velocity, speed 1 (6 velocities), speed r2 (12
H(f ...fQ)= nfq n(f/ w), (2) velocities) - i.e., Q = 19

q=l Q27: rest velocity, speed 1 (6), speed [2I (12), and speed

'.6fi (8)- i.e., Q = 27 (7)
where the normalized weights Wq = 1 are Because detailed balance is in-built into the entropic LB

algorithm [see Eq. (3)], the scheme is unconditionally
determined self-consistently. The collision operator Qq in stable for arbitrary large Reynolds numbers, Re -
Eq. (1) is determined so that one remains on a constant UoL/2rpo.
entropy surface

HH(fl'.f )H(fl ... fQ). (3) 3. CAP Parallelization and Simulation

Eqs. (1-3) constitute the basics of the detailed-balance Results
lattice algorithms for fluid turbulence that are ideal for
parallel (both classical and quantum) supercomputers. Since entropic LB consists of local collisional

relaxation and simple shifting of data along the lattice
links, it is ideally parallelized. In the CAP-Phase I run,
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we investigated the scaling of our entropic lattice E(t) = 2 1eff (t)(SijS), where Sy is the usual rate of strain
Boltzmann (ELB)-Q27 algorithm on the Naval
Oceanographic Office (NAVO) IBM-P5 (Babbage) all the tensor and the effective relaxation rate (to make an
way up to the full 2,912 PEs available, achieving over 6.3 analogy with standard LB algorithms)
teraflops (TFlops)/s sustained performance (see Figure 1). /e(t)=(< 4 z/a(x,t)>-l)/6 . Clearly the Q19-results

This is close to perfect scaling with the number of PEs. significantly deviates even qualitatively from the Q27-

The MHD-LB code has been run on the Earth Simulator and Q15-results, while there is strong quantitative

on 4,800 PEs, achieving a sustained timing of over 26 agreement between the Q27- and Q15- models (up to a

TFlops/s (which is 67% of peak on this vector simple rescaling). This contrasts strongly with a low-

machine)-the best performance of a scientific code on resolution grid run on 5 3 at a somewhat lower

that supercomputer to date. On Blue Gene this code has molecular viscosity, see Figure 2(0. It appears that these

been run on 32,768 PEs and achieving over 9.1 TFlops/s differences arise from the Newton-Raphson root finder

(23% of peak on this #PEs scalar machine), again with that determines at each grid point and at each time the

excellent scaling. a(x,t) function that enforces detailed balance on the
constant entropic surface, Eq. (3). These functions a(x,t)

Table 1. GFIops/s per CPU for 2912 CPUs for 2,000 seem to be much more lattice dependent, i.e., whether
time-steps for the 3 ELB-codes Q27, Q19 or Q15, than would have been gleaned from

small grid runs. In Figure 3, we plot the development of

#PEs Grid Model (s per PE the longitudinal and transverse ID energy spectra:

2912 ca1956 "  ELB-Q27 7554.7 2.17 E,, (k, t) = v (k,,)2, E,, (k.,t)= Zv (k,t)21 (8)
2 9 2 .............. ca i9 5 3  ..........LB -Q . ................2 ... 4...... .. ............... k, ,k, k,,k,

21 a1 950 3EL BQ15 4 7 98.4 2.05 for the initial Kida velocity profile with initial delta

In Table 1 we show the wallclock time and average function spectra

performance of the various ELB models for the full 2,912 E (k.,0) = E.(k. - 2), and E (k,0) =E[9(k -2)+5(k. -4)] (9)
PEs available for 2,000 LB time-steps. The Q27 model, While the terabytes of data from the early stages (t < 28K)
based on the 27 kinetic streaming vectors, is the most of the Q27-run are being retrieved and analyzed, some of
memory intensive (about 1 KB/grid point) and requires a the data from the t 28K has been analyzed. The energy
wallclock time which is over 1.5 times that required by spectra approximately obey a K 513 Kohnogorov law, with
the Q 15 model (which requires just 0.5 KB/grid point). sect pprniate vey a k, Koloo, law, th

For CAP Phase II, we wished to investigate the role a slight upturn at the very large ks in Etong, indicating that
of the underlying kinetic lattice symmetry on Navier- the run is slightly unresolved at these scales.Stokes turbulence, since all three ELB-algorithms recover The probability distribution functions (p~dfs) for the
th irStokes turbulenceqtionsl toe leangord n tver velocity and vorticity components are shown in Figure 4.
the Navier-Stokes equations to leading order in the The velocity field is basically Gaussian-but with tails
Chapman-Enskog expansion. that are substantially higher than a Guassian. These tails
important since on small grids (e.g., 512 ) and low
molecular viscosities (po = 2x 10-4) we [4 3 had found very die out with time as seen by the plot of P[v,] at t = 29K

minor differences in the simulation results from the Q27, (Figure 4a) and at t = 41K (Figure 4b). The pdfs for the
Q19, and Q15 models. With 2,048 PEs available for 24 other velocity components have very similar behavior.
hour shifts, the maximal spatial grid for the Q27 On the other hand, the vorticity pdf is well fitted by an
algorithm was 1,6003. All three models were run with the exponential pdf. This is indicative of intermittency in the
same base parameters: u0 = 0.035, pO = 5x 10-4 on the turbulence.
1,600 3-grid (i.e., with a base Re = uoL/21rpo ; 18,000 and
computational resolution/grid spacing Re3/4/L = 1) for a 4. Turbulence Morphology for Free Shear
Kida initial velocity profile [6] with delta-function energy Turbulence
spectra. In Figure 2, we plot the normalized kinetic

energy <Iu(xt) > / <Iu(X,0Of >, the normalized There is a correlation between the onset of turbulence
2 2 in a laminar-to-turbulence transition and the order-

enstrophy <I(xt)I' > / < 10)(x,0)l >, palinstrophy disorder phase transition in ferromagnetism. Just as Ising
2 P(t) =<Iv×xlo >, where the vorticity o) = V x u, and lattice models are fundamental to understanding critical

phenomena, kinetic lattice gas models that we are
< .. > represent volume average over the periodic domain, pursuing could have a similar impact. We now give some
The ELB-dissipation rate e(t)is defined by preliminary results on the turbulence morphology from

512' grid runs. The morphology can be broken down into

54



three main stages, Figure 5. Stage 1 occurs in the initial correlation information. While this did not affect the
time interval 0 < t < 3.2K with the enstrophy Q(t) energy decay, there were significant discontinuities
increases exponentially, independent of the viscosity, introduced into the enstrophy and higher energy spectral
The enstrophy curve is plotted in Figure 5 with the integer moments.
dots '1'. '2' ... '7'-and these integers correspond to the The parallelization strength of ELB arises from the
isosurfaces of constant vorticity at t = IK, t = 2K ... t = modeling of the macroscopic nonlinear derivatives by
7K in Figure 5. The color coding is based on the value of local moments. Chapman-Enskog asymptotics will then,
1.)C: grey corresponds to ii 6) = -, blue for i .6) = +1 on projecting back into physical space, yield these
and red for ii. 6) = -1. In this initial stage, the isosurfaces nonlinear derivatives. Indeed, this will allow ideally
of vorticity are stretched with a sharp rise in d.2/dt (the parallelized Smagorinsky type LES to be modeled by LB
sharply rising curve above the enstrophy curve in Stage methods and in LB-MID algorithms enforce
1). In Stage 2, for time 3.2K < t < 9K, shown shaded in automatically V • B = 0 without the recourse to expensive
Figure 5, there is large scale anisotropic turbulence with divergence cleaning algorithms.
intermittency. In this shaded region dfidt becomes The interconnection between quantum algorithms
jagged and predominantly is decreasing in large spurts that can run on quantum (and classical) computers and
with intermediate avalanches occurring at t = 5.1K, and ELB (that can only run on classical computers) has been
6.75K (vertical red lines in Stage 2 of Figure 5). Stage 3, outlined as well as a new morphology of free shear
for 9K < t < 14K, is the inertial subrange with eventual turbulence and the onset of laminar-to-turbulence
exponential decay of the enstrophy (see curve fitted red transition. The analogy between
line that fits n(t) well for t > 10K). In this Stage 3, we Order-disorder phase
see the onset of homogeneous isotropic small scale trnsitio (Lattice) Ising Model
turbulence with energy cascading to small scales leading transition
to the k/513 Kolmogorov energy spectrum. The velocity laminar-turbulence <* Entropic Lattice
pdf is Gaussian while the vorticity pdf is exponential (see fluid transition Boltzmann Model

the inset plots in Figure 5). is being strongly pursued.
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Figure 4. The pdf for the velocity component v. at (a) t = 29K,
and (b) t = 41K, fitted to Gaussian pdfs. The pdf for the

3 vorticity component ox at t = 40K is shown in (c), fitted to an

L exponential pdf.
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Figurel. Scaling of ELB-Q27 on Babbage, showing a near
perfect scaling with CPUs

= 4 -I 4 4

(M) (b) ()

Figure 2. The evolution of the normalized (a) kinetic energy Figure 5. Surfaces of constant vorticity from t = OK to t = 7K,
K(t)/K(O), (b) enstrophy fl(t)OK(0) ,(c) palinstrophy P(t), (d) color coded by 6 x 6 [grey = 0, blue = +1, red = -1]. Stage 1:

dissipation rate e(t), (e) rf for the Q27, Q19, and Q15 0< t < 3.2K. Vortex stretching, with an exponential growth in
algorithms on 1,6003 -grid with (f) normalized enstrophy from the enstrophy fl(t) - the 1... .7 corresponds to vorticity

a 512 3-slmulation at somewhat lower molecular viscosity isosurface plots. Stage 2: 3.2K < t < 9K. Large scale
anisotropic turbulence and intermittency occur. The major

breaking points are at 3.2K, 5.1K and 6.8K (red lines in
O.f,.3., .(.ft,. ....414 enstrophy plot). Stage 3: t > 9K. Inertial subrange with

homogeneous isotropic small scale turbulence with k-5 3

Kolmogorov energy.

1 10 100 Iw .

Figure 3(a). The longitudinal energy spectrum, (b) the
transverse energy spectrum for t > 28K
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